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Abstract. A new type of resonant phenomena in the Mössbauer spectroscopy of soft magnetic
materials in radiofrequency (rf) magnetic fields is predicted for the rf field frequencies related to
those of components of the magnetic hyperfine structure via the parametric resonance condition.
Resonant effects of this kind are still unknown in physics; they are realized not at frequencies of
transitions between the energy sub-levels of the ground or excited nuclear states, which take place
in conventional nuclear magnetic resonance, but at frequencies which are a combination of the
frequencies of hyperfine transitions. In this case a separation between the real energy levels can
exceed the value of the ‘resonant’ frequency by about 10 orders of magnitude and the resonant rf
field sets as if in coherency between these energy levels. Such resonances can only be observed
when relaxation processes play an essential role, which permits them to be defined as the relaxation-
stimulated resonances. The simplest relaxation model of so-called one-way and localized relaxation
is proposed. Within this model an analytical expression for Mössbauer absorption spectra is derived,
based on which the specific features of the new resonant effects are analysed in detail.

1. Introduction

Studies of the M̈ossbauer spectra of magnetic materials under external radiofrequency (rf)
magnetic field excitation are of interest mainly in connection with the collapse effect
found by Pfeiffer in 1971 [1]. When a strong enough rf field is applied, a well-resolved
magnetic hyperfine (HF) structure collapses into a single central line (or quadrupole doublet)
accompanied with sidebands. This effect has been observed for a number of soft magnetic
materials (see [2] and references therein). One more range of phenomena in the field is
associated with the observation of double gamma-magnetic resonance [3]. At the rf field
frequency,ωrf , equal to one of the nuclear magnetic resonance frequencies for ground (ωg)
or excited (ωe) nuclear states, the strongest influence of the rf field on the shape of Mössbauer
absorption spectra is expected. Therefore, in this case a splitting of all spectral components is
predicted. Attempts to observe the effect started in the 1960s [3], but they were ineffective for
a long time, until recently, when the nuclear magnetic resonance at the excited57Fe nuclear
level was observed by Kazan physicists (see [4] and references therein).

In the present paper, resonant phenomena of a qualitatively new type are predicted. The
new resonances should reveal themselves in the spectra taken at the parametric resonance
condition, i.e. at

ωrf = 2|Mωe −mωg|
n

(1)
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wheren is an integer,m andM are the projections of nuclear spin in the ground and excited
states, respectively, on the direction of the hyperfine field at the nucleus. Resonant effects of
this kind are still unknown and their non-trivial character becomes evident if one recalls that
the energy separation between the ground and excited nuclear levels is larger than the splitting
of the nuclear levels in a hyperfine field by about 10 orders of magnitude. In spite of this,
the resonant rf field sets as if in coherency between the hyperfine sub-levels of the nucleus in
the ground and excited states. These resonant effects can be observed only when relaxation
processes play an essential role in the sample’s magnetization reversal. For this very reason,
resonances of the kind (1) will be calledrelaxation-stimulated resonances.

A theory developed in [5] for the description of relaxation Mössbauer absorption spectra
under rf magnetic field excitation allows one to calculate the spectra as a function of the rf field
frequency and amplitude and by that, naturally, to elucidate the question of the presence of new
resonances. Simply by means of numerical calculations based on the general equations, these
new resonances have been found. However, owing to the singularity of these phenomena, here
we simplify the very relaxation model to such an extent that permits the final equations for the
absorption spectrum to be derived in a relatively simple form. Along with that, in section 2, we
introduce a model ofone-way and localized relaxation(OWLR), a special type of relaxation
process.

In section 3, an analytical expression for the description of Mössbauer absorption spectra
within the OWLR model is derived. This expression allows one to describe completely the
collapse effect and to carry out a simple analysis of the relaxation-stimulated resonances as a
function of relaxation parameters. The latter is described in section 4.

2. Model of OWLR

Consider a sample as an ensemble of single-domain ferromagnetic particles with unidirectional
magnetic anisotropy energy of whichEan is assumed to be large enough so that

Ean = KV � kBT (2)

whereV is the volume of the particle,K is the magnetic anisotropy constant,T is the
temperature, andkB is the Boltzmann constant. Owing to condition (2), it is supposed that,
in the absence of an external magnetic field, each particle can stay in only two states, 1 and
2, with the same energy and opposite directions of the particle’s magnetic moment along the
easiest magnetization axis. Generally speaking, these states are bound with each other through
relaxation processes described by the probabilities of the transitions per unit of time,p12 and
p21, which are equal to each other with no external magnetic field. When an external magnetic
field is applied, the energies of these states become different and their magnetic moments
change in direction in order to tune to the direction of the magnetic field. Moreover, the
probabilities of the transitions,p12 andp21, become different so that in accordance with the
detailed balancing principle, the transition from the upper to the lower level appears to be more
probable than the opposite transition (see figure 1). This difference is determined by various
energy barriers,U1 andU2, to be overcome for the downward and upward transitions.

In an external rf magnetic field

H(t) = H0 cosωrf t (3)

the relaxation rates can be represented in the form

p12(t) = p0 exp[−U1(t)/kBT ]

p21(t) = p0 exp[−U2(t)/kBT ] (4)
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Figure 1. Two equilibrium states of a particle with different directions of its magnetic momentM
in an external magnetic fieldH (a) and a scheme of the transitions between the states (b).

wherep0 is a constant slightly dependent on the magnetic field strengthH(t). The values
of the energy barriers for single-domain particles with different orientation of the easiest
magnetization axis have long since been obtained by Stoner and Wohlfarth [6]. According
to the results of this work, one can find that for a particle with the easiest magnetization axis
parallel to the direction of the magnetic field

U1,2(t) = 2KV
[Hc ± |H(t)|]2

H 2
c

(5)

whereHc = 2K/M0 is the so-called critical field andM0 is the specific magnetization of the
particle. Equation (5) applies at the field strengthH(t) < Hc, while atH(t) > Hc, according
to [6], the value ofU2(t) is equal to zero andU1(t) assumes the value of 2M0H(t).

From equations (2), (4) and (5), one can neglect relaxation processes in the absence of a
magnetic field. When a magnetic field is applied, the relaxation process remains activated, but
there are different energy barriers for the downward and upward transitions. The energy barrier
for the upward transition increases with increasing field strength and, hence, such transitions
can also be disregarded. On the other hand, for the downward transition, the energy barrierU2

decreases with increasing field strength and when the field strength reaches a certain value, the
relaxation processes become so intense that they influence the shape of the Mössbauer spectra.
Relaxation processes of this kind, when only the downward transitions can be taken into
account and the upward transitions can be neglected, will be referred to asone-way relaxation.

As seen from equation (5), intense relaxation processes will occur at maximum values of
the field strength, i.e. at moments

tk = kTrf /2 (6)

wherek is an integer andTrf = 2π/ωrf is the rf field period. Therefore, at highKV the
relaxation processes should be taken into consideration only in the time intervals (tk − tε,
tk + tε), wheretε is much smaller thanTrf . We introduce the integral characteristics of the
relaxation process,r andq, defined by

r = exp

[
− 2

∫ Trf /2

Trf /2−tε
p21(t) dt

]
q = 1− r. (7)



626 A M Afanas’ev et al

a

b

r

q

c

T    /2rf

Hh f

-H h f

Hh f

-H h f

0 1 2 3 4 5 t/T   rf

Hh f

-H h f

Figure 2. Time trajectories of the hyperfine magnetic field in the model of OWLR (a), with no
relaxation atq = 0 (b), and in the regime of the complete particle’s magnetization reversal atq = 1
(c).

Herer determines the probability of a particle staying in the same state on passing the point
tk andq is the probability that it changes its state on passing this point. As one can see below,
just these integral characteristics will determine the shape of the Mössbauer spectra.

Now we can introduce a model of so-calledlocalized relaxationwhere the relaxation is
considered to take place in an infinitely small time interval, aroundtk, so that the resulting
effect of the relaxation can be completely described by the parametersr andq. Due to the
exponentialp21(t) dependence (4), one can extend the time intervaltε in equation (7) up to
Trf /4 with an exponential accuracy, which results in

r = exp

[
− 2

∫ Trf /2

Trf /4
p21(t) dt

]
. (8)

Note that within this model the time trajectories of the hyperfine field become stochastic in
character, as shown in figure 2, and in a momenttk there occurs a bifurcation of the trajectories;
one of them remains in the same direction of the hyperfine field and the other changes to the
opposite direction. As seen from the figure, the time trajectories forq = 0 andq = 1 are
deterministic in character. The first case withq = 0 is trivial and corresponds to the time-
independent hyperfine field, while the second case has a simple analytical solution which
describes the collapse effect and the formation of sidebands [7, 8].

The relaxation model considered above is the simplest one and can be described by
parameterr orq which can represent different physical processes, for instance, the presence of
the interparticle interaction or its absence. On the other hand, as one can see below, within this
model a rather simple analytical expression for the description of the Mössbauer absorption
spectra can be derived so that qualitative effects of a rf magnetic field can be traced.
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3. Mössbauer absorption spectra within the model of OWLR

A theory on the relaxation M̈ossbauer spectra of single-domain ferromagnetic particles under
rf magnetic field excitation was first developed in [5] under the assumption that changes in the
direction of the particle’s magnetic moment can be neglected and the hyperfine field at nucleus
Hhf can change only to the opposite direction as a result of relaxation processes. According
to the results of this work, we have for the absorption cross-section

σ(ω) = σa0
2
0

4

∑
α

|Cα|2ϕα(ω) (9)

whereα ≡ (M, m), the coefficientsCα determine the intensities of the corresponding hyperfine
transitions and can be expressed in terms of the Clebsch–Gordan coefficients,σa is the effective
absorber thickness,00 is the width of the excited nuclear level, and

ϕα(ω) = 1

00Trf

∫ Trf

0
dt
∫ t+Trf

t

dt ′〈W(t)| eiω̃(t ′−t)

1̂− eiω̃Trf Ĝα(t, t + Trf )
Ĝα(t, t

′)|1〉 + c.c. (10)

Hereω̃ = ω + i00/2,

Ĝα(t, t
′) = T̂ exp

[ ∫ t ′

t

dt ′′(−iω̂α − P̂ (t ′′))
]

(11)

P̂ (t) =
(
p12(t) −p12(t)

−p21(t) p21(t)

)
(12)

ω̂α =
(
ωα 0
0 −ωα

)
(13)

whereT̂ is the time-ordering operator,ωα = Mωe − mωg, ωe,g = ge,gµNHhf , µN is the
nuclear magneton,gg,e are the nuclearg-factors for the ground and excited nuclear states,
respectively, and the vector of population of the energy states,〈W(t)|, is completely defined
by the relaxation process

d〈W(t)|
dt

= −〈W(t)|P̂ (t). (14)

In solving this equation one should use the periodicity condition instead of the initial condition

〈W(t + Trf )| = 〈W(t)|. (15)

So, for the OLWR model discussed in the previous section one can easily obtain

〈W(t)| =


〈W1| = 1

1 + r
(1r) for t ∈ (t2k, t2k+1)

〈W2| = 1

1 + r
(r 1) for t ∈ (t2k+1, t2k+2).

(16)

Using equations (9)–(15) one can calculate the Mössbauer absorption spectra for arbitrary
amplitude and frequency of a rf field with no restrictions on the character of the relaxation
processes. Since the operatorsω̂α andP̂ do not commute with each other and the operatorsP̂ (t)

in the general case do not commute in different moments, it is necessary to perform relatively
complicated calculations, a major part being the calculations of the chronological ordering
operators. The power of the modern computer allows one to carry out much more complicated
calculations in comparison with those in the case considered here (see, for instance, [8]).
However, there is no possibility of a qualitative analysis of the transformation of the Mössbauer
spectra. The simplified OWLR model just removes this defect.
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Indeed, in the OWLR model, between the points of localization of the relaxation processes,
one can neglect the relaxation and a simple expression for the Green function,Ĝα(t, t

′), is
obtained

Ĝα(t, t
′) =

(
e−iωα(t ′−t) 0

0 eiωα(t ′−t)

)
for (t, t ′) ∈ (tk, tk+1). (17)

In calculating the functionŝGα(t, t
′) in the vicinity of the pointstk one can neglect terms

of the hyperfine interactions and retain only the relaxation operatorP̂ . Moreover, in our
model of the one-way relaxation the operatorsP̂ (t) do commute in different moments, which
allows the corresponding functionŝGα(t, t

′) to be expressed in terms of the integral relaxation
characteristicsr andq (see equation (8)):

Ĝα(t, t
′) = R̂1 =

(
r r

0 1

)
for t ∈ (t2k+1− tε, t2k+1), t

′ ∈ (t2k+1, t2k+1 + tε) (18)

Ĝα(t, t
′) = R̂2 =

(
1 0
q r

)
for t ∈ (t2k − tε, t2k), t ′ ∈ (t2k, t2k + tε). (19)

For arbitraryt and t ′ the functionĜα(t, t
′) is easily found by taking into account the

property of theT̂ product:

Ĝα(t, t
′) = Ĝα(t, t

′′)Ĝα(t
′′, t ′) for t < t ′′ < t ′. (20)

So, for the functionĜα(t, t + Trf ) appearing in equation (10) we have

Ĝα(t, t + Trf ) = Ĝ−1
α (0, t)Ĝα(0, Trf )Ĝα(0, t) for t ∈ (0, Trf /2) (21)

where

Ĝα(0, Trf ) = Ĝα

(
0,
Trf

2

)
R̂1Ĝα

(
0,
Trf

2

)
R̂2. (22)

Note that all the functionŝGα and their inverses which appear on the right of equations (21)
and (22) are determined by equation (17). Thus, there are simple analytical expressions for the
Green functionŝGα(t, t

′) for arbitrary time intervals in the OWLR model chosen here. Taking
into consideration equations (16)–(22), the initial formula (10) can be transformed to

ϕα(ω) = ϕ′α(ω) + ϕ′−α(ω) (23)

where

ϕ′α(ω) =
1

00Trf
〈W1|

∫ Trf /2

0
dt e−iω̃t Ĝ−1

α (0, t)
1

1̂− eiω̃Trf Ĝα(0, Trf )

×
∫ t+Trf

0
dt ′ eiω̃t ′Ĝα(0, t

′)|1〉 + c.c. (24)

Then, equation (9) for the absorption cross-section takes the form

σ(ω) = σa0
2
0

2

∑
α

|Cα|2ϕ′α(ω). (25)

As seen from equation (24), the integrals over time are easily taken and, omitting the trivial
details, we write down the final result in the analytical form

ϕ′α(ω) =
Trf

4(1 + r)00

[
〈Aα(ω)| 1

1̂− eiω̃Trf Ĝα(0, Trf )
|Bα(ω)〉 −1ϕ̃α

]
+ c.c. (26)
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where

Ĝα(0, Trf ) =
(
r e−iωαTrf + q2 qr

q e−iωαTrf r e−iωαTrf

)
(27)

〈Aα(ω)| = (f (−ỹ + yα), rf (−ỹ − yα)) (28)

|Bα(ω)〉 =
(

1̂ + eiỹ Ĝ

(
0,
Trf

2

)
R̂1

)(
f (ỹ − yα)
f (ỹ + yα)

)
(29)

1ϕ̃α(ω) = 1− f (−ỹ + yα)

i(ỹ − yα) + r
1− f (−ỹ − yα)

i(ỹ + yα)
(30)

f (x) = eix − 1

ix
(31)

ỹ = ω̃Trf /2 yα = ωαTrf /2. (32)

Using equations (25)–(32) the M̈ossbauer absorption spectrum under rf field excitation
can be calculated for arbitrary frequency of the rf field, including both high and low frequency
ranges, as well as for arbitrary values of the relaxation parameterq. Note that in the OWLR
model considered here the transformation of the spectra with the rf field amplitude changing
is simply determined by variations in the parameterq. It is obvious that this correlation
can be rather diverse depending on the character of the relaxation processes, as well as on
the geometric (the shape, volume and orientation of particles) and energy (positions of local
minima and values of barriers) parameters.

Figure 3 shows examples of the transformation of the Mössbauer absorption spectra
calculated within the OWLR model. In rf fields which are weak enough, when the relaxation
effect can be neglected, i.e. forq = 0

|Bα(ω)〉 = −
(

[1− ei(ỹ−yα)]/i(ỹ − yα)
[1− ei(ỹ−yα)]/i(ỹ + yα)

)
(33)

so that equation (26) is reduced to the form

ϕ′α(ω) = −
1

200
Im

(
1

ω̃ − ωα +
1

ω̃ + ωα

)
= 1

4

(
1

(ω − ωα)2 + 02
0/4

+
1

(ω + ωα)2 + 02
0/4

)
(34)

and the absorption spectrum is a superposition of Lorentzians with natural linewidth, which
correspond to the static magnetic HF structure (see figure 3(a)).

In strong rf fields, when complete magnetization reversal occurs for half a period of the
rf field, i.e. forq = 1, we easily find

ϕ′α(ω) =
Trf

400

{
f (ỹ − yα)[f (−ỹ + yα) + f (ỹ + yα)]

1− exp(2iỹ)
+
f (−ỹ + yα)

i(ỹ − yα)
}

+ c.c. (35)

which is the most compact representation of the well known result describing the collapse
effect and formation of sidebands [7, 8] (see figure 3(e)).

4. Relaxation-stimulated resonances

The calculations performed for an intermediate range of the relaxation parameter, 0< q < 1,
reveal a specific transformation of the spectral shape with changing rf field frequency. For
most values of the rf field frequency, the behaviour shown in the central column of figure 3
takes place. With the relaxation rateq increasing or, identically, with the rf field amplitude
increasing, a characteristic relaxation broadening of all spectral lines is observed, which is
followed by the collapse of the magnetic HF structure into a single central line with sidebands.
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Figure 3. Transformation of the M̈ossbauer absorption spectra with the relaxation parameter
q = 0, 0.2, 0.4, 0.6, 1 (a)–(e) of the OWLR model for different values of the rf field frequency
ωrf /2π = 50 MHz (left column), 75 MHz (central column), and 100 MHz (right column). Here
and below, the calculations are performed for the57Fe nuclei,ω3/2,1/2/2π = 50 MHz and a
nonpolarizedγ -beam transverse to the direction of an external rf field.

However, when the rf field frequency is equal to one of the magnetic HF structure frequencies
or is related to the latter via the parametric resonance condition (1), a qualitatively different
behaviour occurs. The left column in figure 3 corresponds to the resonant frequency

ωrf = ω3/2,1/2 ≡ 3
2ωe − 1

2ωg. (36)

As seen from this figure, in almost the whole range ofq, where a well resolved HF structure is
observed the outermost spectral lines hardly broaden and remain very narrow with the natural
linewidth, whereas there is a substantial broadening of the inner spectral lines.

In the right column of figure 3, which corresponds to the resonant frequency

ωrf = 2ω3/2.1/2 (37)
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Figure 4. Mössbauer spectra calculated within the OWLR model atq = 0.3 in a rf magnetic field
with the frequencyωrf /2π = 45, 50 and 55 MHz (a)–(c), near the frequencyω3/2,1/2.

a distinct splitting of the outermost spectral lines is observed at small values ofq (figures 3(b)
and (c)), while the inner spectral lines demonstrate a conventional relaxation broadening
characteristic of the spectra in the central column of figure 3.

These results were actually obtained by analysing the shape of the Mössbauer spectra of
magnetic systems, like an ensemble of the Stoner–Wohlfarth particles, by means of numerical
calculations based on the general equations derived in [5, 8]. Obviously, it is impossible to
understand the physical mechanisms of the formation of the resonant phenomena on the basis
of general equations like equation (10), which not only has a simple analytical solution, but
even requires a great deal of effort for its computer realization. The OWLR model helps one
not only to derive rather simple equations for the description of the spectra, but also to express
in a clear form the parameters of the spectral lines as a function of the relaxation parameterq

and the rf field frequency in the vicinity of the resonances (1).
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Figure 5. Mössbauer spectra calculated within the OWLR model atq = 0.2 in a rf magnetic field
with the frequencyωrf /2π = 94, 99, and 104 MHz (a)–(c), near the doubled frequencyω3/2,1/2.

We will assume that the relaxation is slow enough, i.e.,

q � 1 (38)

as well as considering spectral ranges in the vicinity ofωα, so that

|ω − ωα| � ωα. (39)

The rf field frequency is considered to be close to one of the parametric resonance frequencies,
i.e.,

|ωrf − ω(n)α | � ωα (40)

where

ω(n)α =
2ωα
n
. (41)

If conditions (38) and (39) hold, the vectors (29) and (30) do not depend on the frequency and
they take the simplest forms

〈Aα(ω) = (1 0) |Bα(ω)〉 =
(

1
0

)
. (42)
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Figure 6. Mössbauer spectra calculated within the OWLR model atq = 0.5 in a rf magnetic field
with the frequencyωrf /2π = 54.5 MHz near the doubled frequencyω1/2,1/2 (a),ωrf = ω1/2,1/2 =
2π × 29 MHz (b),ωrf = 2ω3/2,1/2/3 = 2π × 33 MHz (c),ωrf = ω3/2,1/2/2 = 2π × 25 MHz
(d).

As far as the term (31) is concerned, it results in only a minor background correction to the first
term in equation (26) and can be neglected. Moreover, in the framework of the approximation
taken, one has to also neglect terms squared over q in equation (27) for the functionĝα (0,
Trf ). As a result, equation (26) is reduced to a simpler form

ϕα(ω) = − 1

00
Im

ω − ωα −1ω + i0/2

(ω − ωα + i0/2)(ω − ωα −1ω + i0/2)± γ 2
(43)

where

γ = q

Trf
(44)

1ω = nωrf − 2ωα (45)

0 = 00 + 2γ. (46)

Signs (+) and (−) before the second term in the denominator of equation (43) correspond to
the even and odd resonances (41). It is clear that equation (43) can be decomposed into two
Lorentzians

ϕα(ω) = − 1

00
Im

(
A1

ω − ωα − λ + i0/2
+

A2

ω + ωα − nωrf + λ + i0/2

)
(47)

where

λ = 1
2(
√
(1ω)2 ∓ 4γ 2 − |1ω|) (48)

A1 = |1ω| + λ|1ω| + 2λ
A2 = λ

|1ω| + 2λ
. (49)
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If the relaxation process is not essential and one can regardγ = 0, there is only the line
at the positionωα. As relaxation becomes involved, the second line appears at the position
(−ωα + nωrf ), i.e., at the place of the sideband from the hyperfine component at the position
−ωα. Thus, the relaxation process generates the appearance of sidebands.

From equations (48)–(49), such a generation is sharply resonant in character over the rf
field frequency. In large detuning ofωrf from the resonant frequency,|1ω| � 2γ , we have

A1 = 1− γ 2

|1ω|2 A2 = γ 2

|1ω|2 (50)

i.e., the intensity of the major line is close to unity and that of the sideband is rather small.
On the other hand, in exact resonance, as seen from equations (48) and (49), the intensities of
both the lines appear to be equal to each other,

A1 = A2 = 0.5. (51)

It is also interesting to follow the transformation of the shapes of these two lines. There
are two different kinds of behaviour depending on the parity of the resonance in this case. So,
for the even resonance (see equation (36)), the value ofλ in exact resonance appears to be
purely imaginary so that both the lines coincide in their positions, but differ in width:

01 = 00 02 = 00 + 4γ. (52)

Whenγ � 00 the spectrum is a superposition of narrow and broad lines, which is revealed
as a sharp increase in the peak intensity for these lines. This has been demonstrated by means
of numerical calculations using the general equations (25)–(32) (see figure 4). Withωrf
detuning from the exact resonance, the width of the first line increases and that of the second
line decreases so that at|1ω| = 2γ they become equal and with|1ω| increasing further the
linewidths do not change.

A qualitatively different behaviour occurs for the odd resonance (see figure 5). In this
case, the value ofλ is always real and the widths of both the lines are equal to each other.
However, on the other hand, as it is easily seen from equations (47) and (48), the lines cannot
be in the same position in the spectrum, i.e., there is a minimum distance between them

112 = 2γ (53)

and they cannot be closer to each other than this value.
The resonant effects described above reveal themselves not only for the outermost spectral

lines, but also for the resonant frequencies (41) corresponding to the inner lines (see figures 6(a)
and (b)), as well as for the resonant frequencies of higher ordersn (see figures 6(c) and (d)).

Naturally, a question arises as to whether the effects predicted could be observed in real
situations, for instance, when a sample consists of particles with random orientation of their
easiest magnetization axes and the hyperfine field at the nucleus can smoothly change direction.
Calculations performed using general equations like equation (10) show that for such systems,
the characteristic features of the even resonances to a considerable extent remain as they are,
whereas the odd resonances are essentially smoothed down. In order to observe the latter,
textured samples need to be prepared.

5. Conclusions

The analysis carried out has allowed the peculiarities of the relaxation-stimulated resonance
effects to be exposed in a distinct form. The proposed model of OWLR enables the Mössbauer
absorption spectra under rf field excitation to be described in the simplest way. Using this
model, the transformation of the spectra could be traced as a function of the rf field amplitude
and frequency as well as the relaxation parameters.
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